Вихревое электрическое поле определение. Вихревое электрическое поле: зарождение и свойства Возникновение вихревого электрического поля

1. Силы взаимодействия между молекулами и атомами в телах

{slide=Ответ}

Между молекулами одновременно действуют силы притяжения и отталкивания, называемые молекулярными силами. Это силы электромагнитной природы. Силы, действующие между двумя молекулами, зависят от расстояния между ними. Если расстояние между молекулами увеличивать, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания.

2. От чего зависит скорость диффузии, испарения, броуновского движения

{slide=Ответ}

Скорость диффузии зависит от рода вещества, от температуры, от агрегатного состояния вещества.

Скорость броуновского движения зависит от температуры, массы броуновской частицы.

Скорость испарения зависит от рода вещества, температуры, площади поверхности, наличия движения воздуха над поверхностью (ветра)

3. Приборы для измерения температуры, давления, влажности

{slide=Ответ}

Для измерения температуры используется термометр.

Для измерения давления используется манометр.

Для измерения влажности используются конденсационный гигрометр, волосной гигрометр, психрометр.

4. Фазовые переходы (парообразование, плавление, сублимация, конденсация, кристаллизация)

{slide=Ответ}

Плавление - процесс перехода вещества из твердого состояния в жидкое.

Кристаллизация - процесс перехода вещества из жидкого состояния в твердое.

Сублимация - процесс перехода вещества из твердого состояния с газообразное.

Парообразование - процесс перехода вещества из жидкого состояния в газообразное.

Конденсация - процесс перехода вещества из газообразного состояния в жидкое.

5. Насыщенный, ненасыщенный пар, динамическое равновесие

{slide=Ответ}

Насыщенный пар - пар, находящийся в динамическом равновесии со своей жидкостью.

Ненасыщенный пар - пар, который не достиг динамического равновесия со своей жидкостью.

Динамическое равновесие - состояние между жидкостью и её паром при котором количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в неё.

6. Формулы давления газа, уравнение Клайперона, уравнение Менделеева-Клайперона, связь кинетичеcкой энергии с температурой

{slide=Ответ}

Формула давления газа - объединенный газовый закон - p = nkT

Уравнение Клайперона

У равнение Менделеева-Клайперона

С вязь кинетичеcкой энергии с температурой Е = (3/2)kТ

7. Перевод температуры из Цельсия в Кельвина, из Кельвина в Цельсии

{slide=Ответ}

Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой:

1) для перевода из температуры в Цельсиях в температуру в Кельвинах Т = 273 + t

2) для перевода из температуры в Кельвинах в температуру в Цельсиях t = Т – 273

8. Шкала Кельвина, шкала Цельсия

{slide=Ответ}

0 0 по шкале Цельсия - температура таяния льда.

100 0 по шкале Кельвина - температура кипения воды.

0 0 по шкале Кельвини - абсолютный нуль - температура, при которой должно прекратиться поступательное движение молекул.

шкала Цельсия шкала Кельвина

9. Связь между температурой и давлением газа, между температурой и кинетической энергией молекул газа

{slide=Ответ}

Связь между температурой и давлением газа p=nkT. Между р и Т прямопропорциональная зависимость (во сколько раз увеличивается температура, во столько же раз увеличивается и давление газа).

Связь между температурой и кинетической энергией молекул газа Е = (3/2)kТ. Между р и Е прямопропорциональная зависимость (во сколько раз увеличивается температура, во столько же раз увеличивается и кинетическая энергия молекул газа)

10. Основные положения МКТ и их опытные обоснования

{slide=Ответ}

В основе МКТ лежат три важных положения, подтвержденные экспериментально и теоретически.

  1. Все тела состоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).
  2. Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.
  3. Между частицами любого вещества существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются опытным путем.

11. Масса и размеры молекул

{slide=Ответ}

Молекулой называют наименьшую устойчивую частицу данного вещества, обладающую его основными химическими свойствами.

Молекула состоит из ещё более мелких частиц – атомов, которые в свою очередь, состоят из электронов и ядер.

Атомом называют наименьшую частицу данного химического элемента.

Размеры молекул очень малы.

Порядок величины диаметра молекулы 1·10 -8 см = 1*10-10 м

Порядок величины объёма молекулы 1·10 -20 м3

Порядок величины массы молекул 1·10 - 23 г = 1·10 -26 кг

12. Свойства твердых тел, жидкостей, газов

{slide=Ответ}

Твердые тела сохраняют объем, сохраняют форму.

Жидкости сохраняют объем, не сохраняют форму.

Газы не сохраняют объем, не сохраняют форму.

13. С поглощением или выделением тепла происходят фазовые переходы.

{slide=Ответ}

Плавление происходит с поглощением тепла

Кристаллизация происходит с выделением тепла.

Парообразование происходит с поглощением тепла.

Конденсация происходит с выделением тепла.

Сублимация происходит с поглощением тепла

14. Влажность воздуха и точка росы

{slide=Ответ}

Абсолютная влажность величина, показывающая, какая масса паров воды находится в 1 м³ воздуха.

Относительная влажность воздуха – это величина, показывающая, как далек пар от насыщения. Это отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре , к давлению насыщенного пара p 0 при той же температуре, выраженное в процентах:

Если воздух не содержит паров воды, то его абсолютная и относительная влажность равны 0.

Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться.

Точка росы – это температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным.

15. График плавления и кипения

Из закона Фарадея (см. (123.2)) следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре,

находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического происхождения (см. § 97). Поэтому встает вопрос о природе сторонних сил в данном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение также нельзя объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется э.д.с., играет второстепенную роль, являясь своего рода лишь «прибором», обнаружи­вающим это поле.

Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает электрическое поле Е В циркуляция которого, по (123.3),

где Е В l - проекция вектора Е B на направление dl.

Подставив в формулу (137.1) выражение (см. (120.2)), получим

Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно,

(137.2)

где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени.

Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его Е Q) вдоль любого замкнутого контура равна нулю:

(137.3)

Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми полями (Е В и Е Q) имеется принципиальное различие: циркуляция вектора Е B в отличие от

циркуляции вектора Е Q не равна нулю. Следовательно, электрическое поле Е B , возбуждаемое магнитным полем, как и само магнитное поле (см. § 118), является вихревым.

Ток смещения

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружа­ющем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнит­ным полем Максвелл ввел в рассмотрение так называемыйток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, прячем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обклад­ками конденсатора существовал ток проводимости, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I)и смещения (I см) равны: I см =I.

Ток проводимости вблизи обкладок конденсатора

,(138.1)

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения , когда и dS взаимно

параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение c (см. (96.2)), имеем

Выражение (138.2) и было названо Максвеллом плотностыю тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и j см. При зарядке конденсатора (рис. 197, в) через проводник, соединя­ющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, следовательно, , т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой

обкладки к правой; поле в конденсаторе ослабляется; следовательно, <0, т. е.

вектор направлен противоположно вектору D. Однако вектор направлен опять

так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, cледовательно, и вектора j см совпадает с направлением вектора , как это и следует из формулы (138.2).

Подчеркнем, что из всех физических свойств, присущих току проводимости. Макс­велл приписал току смещения лишь одно - способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).

В диэлектриках ток смещения состоитиз двух слагаемых. Так как, согласно (89.2), D= , где Е-напряженность электростатического поля, а Р-поляризованность (см. § 88), то плотность тока смещения

, (138.3)

где - плотность тока смещения в вакууме, - плотность тока поляризации - тока, обусловленного упорядоченным движением электрических зарядов в ди­электрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возник­новению в окружающем пространстве магнитного поля.

Следует отметить, что название «ток смещения» является условным, а точ­нее - исторически сложившимся, так как ток смещения по своей сути - это изменя­ющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток.



Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А. А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.

Максвелл ввел понятиеполного тока, равногосумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока

Введя понятия тока смещения и полного тока. Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н (см. (133.10)), введя в ее правую часть полный ток сквозь поверхность S, натянутую на замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

(138.4)

Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.

Помимо потенциального кулоновского электрического, существует вихревое поле, в котором имеются замкнутые линии напряженности. Зная общие свойства электрического поля, легче понять природу вихревого. Оно порождается изменяющимся магнитным полем.

Что вызывает индукционный ток проводника, находящегося в неподвижном состоянии? Что такое индукция электрического поля? Ответ на эти вопросы, а также об отличии вихревого от электростатического и стационарного, токах Фуко, ферритах и другом вы узнаете из следующей статьи.

Как меняется магнитный поток

Вихревое электрическое поле, появившееся вслед за магнитным, совсем иного рода, нежели электростатическое. Оно не имеет прямой связи с зарядами, и напряженности на его линиях не начинаются и не заканчиваются. Это замкнутые линии, как у магнитного поля. Поэтому оно и называется вихревое электрическое поле.

Магнитная индукция

Магнитная индукция будет меняться тем быстрее, чем больше напряженность. Правило Ленца гласит: при увеличении магнитной индукции направление вектора напряженности электрополя создает левый винт с направлением другого вектора. То есть при вращении левого винта по направлению с линиями напряженности его поступательное перемещение станет таким же, как и у вектора магнитной индукции.

Если же магнитная индукция будет убывать, то направление вектора напряженности создаст правый винт с направлением другого вектора.

Силовые линии напряженности имеют то же направление, что и индукционный ток. Вихревое электрическое поле действует на заряд с той же силой, что и до него. Однако в данном случае его работа по перемещению заряда является отличной от нуля, как в стационарном электрическом поле. Так как сила и перемещение имеют одно направление, то и работа на всем протяжении пути по замкнутой линии напряженности будет прежней. Работа положительного единичного заряда здесь будет равна электродвижущей силе индукции в проводнике.

Токи индукции в массивных проводниках

В массивных проводниках индукционные токи получают максимальные значения. Это происходит потому, что они имеют малое сопротивление.

Называются такие токи токами Фуко (это французский физик, исследовавший их). Их можно применять для изменения температуры проводников. Именно этот принцип заложен в индукционных печах, к примеру, бытовых СВЧ. Он же применяется для плавления металлов. Электромагнитная индукция используется и в металлических детекторах, расположенных в аэровокзалах, театрах и других общественных местах со скоплением большого количества людей.

Но токи Фуко приводят к потерям энергии для получения тепла. Поэтому сердечники трансформаторов, электрических двигателей, генераторов и других устройств из железа изготавливают не сплошными, а из разных пластин, которые друг от друга изолированы. Пластины должны находиться строго в перпендикулярном положении относительно вектора напряженности, который имеет вихревое электрическое поле. Пластины тогда будут иметь максимальное сопротивление току, а тепла будет выделяться минимальное количество.

Ферриты

Радиоаппаратура функционирует на высочайших частотах, где число достигает миллионов колебаний в секунду. Катушки сердечников здесь не будут эффективны, так как токи Фуко появятся в каждой пластине.

Существуют изоляторы магнитов под названием ферриты. Вихревые токи в них не появятся при перемагничивании. Поэтому потери энергии для тепла сводятся к минимальным. Из них изготавливают сердечники, используемые для высокочастотных трансформаторов, транзисторные антенны и так далее. Их получают из смеси первоначальных веществ, которую прессуют и обрабатывают термическим путем.

Если магнитное поле в ферромагнетике быстро изменяется, это ведет к появлению индукционных токов. Их магнитное поле будет препятствовать изменению магнитного потока в сердечнике. Поэтому поток не будет меняться, а сердечник — перемагничиваться. Вихревые токи в ферритах так малы, что могут быстро перемагничиваться.

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Итак, давайте зафиксируем то, что мы уже успели изучить. Все наши формулы могут быть выведены из нескольких утверждений.

Утверждение 1.

Математической формулировкой этого утверждения является теорема Остроградского - Гаусса для напряженности электрического поля

В правой части стоит интеграл от плотности зарядов по произвольному объему, который равен полному заряду внутри него. В левой части - поток вектора напряженности электрического поля через произвольную замкнутую поверхность, ограничивающую этот объем. Как мы видели, закон Кулона также содержится в этом уравнении.

Утверждение 2.

Магнитные заряды отсутствуют в природе.

Математической формулировкой этого утверждения является теорема Остроградского - Гаусса для вектора магнитной индукции, в правой части которой стоит нуль

Утверждение 3.

Математически это выражается как равенство нулю циркуляции напряжённости электростатического поля по произвольному контуру

Утверждение 4.

Математическим выражением этого утверждения является теорема о циркуляции вектора магнитной индукции

В левой части стоит циркуляция магнитного поля по произвольному контуру L , а в правой - интеграл от плотности полного тока по произвольной поверхности S , натянутой на этот контур. Этот интеграл равен сумме токов, пересекающих поверхность S . В этом уравнении содержится закон Био - Савара - Лапласа.

Эти четыре уравнения надо дополнить выражением для силы Лоренца, действующей на движущиеся заряды со стороны электромагнитных полей

Внимательный читатель заметит, что заголовки к двум последним утверждениям выделены другим шрифтом. Это сделано не случайно: данные утверждения подлежат модификации. Дело в том, что с тех пор, как мы сформулировали эти четыре утверждения, мы познакомились еще с одним явлением - электромагнитной индукцией. Оно пока еще не нашло отражения в выписанных уравнениях. Сделаем это.

Если магнитный поток через проводящий виток L меняется, то в витке возникает ЭДС индукции. Что это означает? Заряды, находящиеся в проводнике, будут испытывать действие силы, связанной с этой ЭДС. Но появление силы, действующей на заряд, означает появление какого-то электрического поля. Циркуляция этого поля по витку как раз и равна по определению ЭДС индукции

Отличие циркуляции от нуля означает, что данное электрическое поле не потенциально, а имеет вихревой характер, подобно магнитному полю. Но если такое поле появилось, то в чем тогда роль витка? Виток - это не более, чем удобный детектор для регистрации вихревого электрического поля по возникшему индукционному току. Для того, чтобы расстаться с витком окончательно, выразим ЭДС индукции через поток магнитного поля. Перепишем закон Фарадея в виде

Объединяя это уравнение с (9.6), приходим к модифицированному утверждению 3 (рис. 9.1).

Утверждение 5.

Рис. 9.1. Закон электромагнитной индукции в трактовке Максвелла:
изменяющееся магнитное поле порождает вихревое электрическое поле

Математически это выражается в виде уравнения

В этом уравнении содержится закон электромагнитной индукции Фарадея.

Здесь надо проявить немного осторожности: раз у нас появилось дополнительное электрическое поле, не изменит ли оно первое утверждение? По счастью, ответ отрицателен: поток вихревого поля через замкнутую поверхность равен нулю, так что это поле не даст вклада в левую часть уравнения (9.1).

Казалось бы, мы учли уже все явления, с которыми знакомы. Почему же тогда мы пометили четвертое уравнение как требующее модификации? Дело в том, что теперь нарушена симметрия между электрическими и магнитными явлениями. Предположим, что в системе нет ни зарядов, ни токов. Может ли существовать тогда электромагнитное поле? Ответ мы знаем из современной жизни: может! Существуют же электромагнитные волны, которые распространяются в космосе и не требует для этого никакой среды. В отсутствие зарядов и токов первые два уравнения (9.1) и (9.2) вполне симметричны. Этого нельзя сказать о второй паре уравнений. Электрическое (вихревое) поле можно породить без зарядов, просто изменением магнитного поля? Почему же магнитное поле нельзя породить не токами, а изменяя электрическое поле?