Лоду 2 порядка с постоянными коэффициентами. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Линейные дифференциальные уравнения второго порядка» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Линейные дифференциальные уравнения

второго порядка с постоянными коэффициентами

  1. Линейные однородные дифференциальные уравнения

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и
- некоторые числа, а функция
задана на некотором интервале
.

Если
на интервале
, то уравнение (1) примет вид

, (2)

и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным .

Рассмотрим комплексную функцию

, (3)

где
и
- действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть
, и мнимая часть
решения
в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция
, где С – произвольная постоянная, также будет решением уравнения (2);

Если и есть решения уравнения (2), то и функция
также будет решением уравнения (2);

Если и есть решения уравнения (2), то их линейная комбинация
также будет решением уравнения (2), где и
– произвольные постоянные.

Функции
и
называются линейно зависимыми на интервале
, если существуют такие числа и
, не равные нулю одновременно, что на этом интервале выполняется равенство

Если равенство (4) имеет место только тогда, когда
и
, то функции
и
называются линейно независимыми на интервале
.

Пример 1 . Функции
и
линейно зависимы, так как
на всей числовой прямой. В этом примере
.

Пример 2 . Функции
и
линейно независимы на любом интервале, т. к. равенство
возможно лишь в случае, когда и
, и
.

  1. Построение общего решения линейного однородного

уравнения

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений
, где и
– произвольные постоянные, и даст общее решение линейного однородного уравнения.

Линейно независимые решения уравнения (2) будем искать в виде

, (5)

где – некоторое число. Тогда
,
. Подставим эти выражения в уравнение (2):

Или
.

Так как
, то
. Таким образом, функция
будет решением уравнения (2), если будет удовлетворять уравнению

. (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции
и
. Эти решения линейно независимы, так как равенство
может выполняться лишь тогда, когда и
, и
. Поэтому общее решение уравнения (2) имеет вид

,

где и
- произвольные постоянные.

Пример 3
.

Решение . Характеристическим уравнением для данного дифференциального будет
. Решив это квадратное уравнение, найдём его корни
и
. Функции
и
являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид
.

Комплексным числом называется выражение вида
, где и - действительные числа, а
называется мнимой единицей. Если
, то число
называется чисто мнимым. Если же
, то число
отождествляется с действительным числом .

Число называется действительной частью комплексного числа, а - мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными:
,
.

Пример 4 . Решить квадратное уравнение
.

Решение . Дискриминант уравнения
. Тогда . Аналогично,
. Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные, т.е.
,
, где
. Решения уравнения (2) можно записать в виде
,
или
,
. По формулам Эйлера

,
.

Тогда , . Как известно, если комплексная функция является решением линейного однородного уравнения, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции
и
. Так как равенство

может выполняться только в том случае, если
и
, то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид

где и
- произвольные постоянные.

Пример 5 . Найти общее решение дифференциального уравнения
.

Решение . Уравнение
является характеристическим для данного дифференциального. Решим его и получим комплексные корни
,
. Функции
и
являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Пусть корни характеристического уравнения действительные и равные, т.е.
. Тогда решениями уравнения (2) являются функции
и
. Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда
и
. Следовательно, общее решение уравнения (2) имеет вид
.

Пример 6 . Найти общее решение дифференциального уравнения
.

Решение . Характеристическое уравнение
имеет равные корни
. В этом случае линейно независимыми решениями дифференциального уравнения являются функции
и
. Общее решение имеет вид
.

Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами имеют вид

где p и q — действительные числа. Рассмотрим на примерах, как решаются однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Решение линейного однородного однородного дифференциального уравнения второго порядка зависит от корней характеристического уравнения. Характеристическое уравнение — это уравнение k²+pk+q=0.

1) Если корни характеристического уравнения — различные действительные числа:

то общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

2) Если корни характеристического уравнения — равные действительные числа

(например, при дискриминанте, равном нулю), то общее решение однородного дифференциального уравнения второго порядка есть

3) Если корни характеристического уравнения — комплексные числа

(например, при дискриминанте, равном отрицательному числу), то общее решение однородного дифференциального уравнения второго порядка записывается в виде

Примеры решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

Найти общие решения однородных дифференциальных уравнений второго порядка:

Составляем характеристическое уравнение: k²-7k+12=0. Его дискриминант D=b²-4ac=1>0, поэтому корни — различные действительные числа.

Отсюда, общее решение этого однородного ДУ 2-го порядка есть

Составим и решим характеристическое уравнение:

Корни действительные и различные. Отсюда имеем общее решение данного однородного дифференциального уравнения:

В этом случае характеристическое уравнение

Корни различны и действительны. Поэтому общее решение однородного дифференциального уравнения 2-го порядка здесь

Характеристическое уравнение

Поскольку корни действительны и равны, для этого дифференциального уравнения общее решение записываем как

Характеристическое уравнение здесь

Так как дискриминант — отрицательное число, корни характеристического уравнения — комплексные числа.

Общее решение этого однородного дифференциального уравнения второго порядка имеет вид

Характеристическое уравнение

Отсюда находим общее решение данного диф. уравнения:

Примеры для самопроверки.

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид


В этой статье мы разберем принципы решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами , где p и q – произвольные действительные числа. Сначала остановимся на теории, далее применим полученные результаты в решении примеров и задач.

Если Вам будут встречаться незнакомые термины, то обращайтесь к разделу определения и понятия теории дифференциальных уравнений .


Сформулируем теорему, которая указывает, в каком виде находить общее решение ЛОДУ.

Теорема.

Общее решение линейного однородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами определяется линейной комбинацией , где - линейно независимые частные решения ЛОДУ на X , а - произвольные постоянные.

Таким образом, общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид y 0 =C 1 ⋅y 1 +C 2 ⋅y 2 , где y 1 и y 2 – частные линейно независимые решения, а С 1 и C 2 – произвольные постоянные. Осталось научиться находить частные решения y 1 и y 2 .

Эйлер предложил искать частные решения в виде .

Если принять частным решением ЛОДУ второго порядка с постоянными коэффициентами , то при подстановке этого решения в уравнение мы должны получить тождество:

Так мы получили так называемое характеристическое уравнение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами. Решения k 1 и k 2 этого характеристического уравнения определяют частные решения и нашего ЛОДУ второго порядка с постоянными коэффициентами.


В зависимости от коэффициентов p и q корни характеристического уравнения могут быть:

В первом случае линейно независимыми частными решениями исходного дифференциального уравнения являются и , общее решение ЛОДУ второго порядка с постоянными коэффициентами есть .

Функции и действительно линейно независимы, так как определитель Вронского отличен от нуля для любых действительных x при .

Во втором случае одним частным решением является функция . В качестве второго частного решения берется . Покажем, что действительно является частным решением ЛОДУ второго порядка с постоянными коэффициентами и докажем линейную независимость y 1 и y 2 .

Так как k 1 = k 0 и k 2 = k 0 совпадающие корни характеристического уравнения, то оно имеет вид . Следовательно, - исходное линейное однородное дифференциальное уравнение. Подставим в него и убедимся, что уравнение обращается в тождество:

Таким образом, является частным решением исходного уравнения.

Покажем линейную независимость функций и . Для этого вычислим определитель Вронского и убедимся, что он отличен от нуля.

Вывод: линейно независимыми частными решениями ЛОДУ второго порядка с постоянными коэффициентами являются и , и общее решение есть при .

В третьем случае имеем пару комплексных частных решений ЛОДУ и . Общее решение запишется как . Эти частные решения могут быть заменены двумя действительными функциями и , соответствующими действительной и мнимой частям. Это хорошо видно, если преобразовать общее решение , воспользовавшись формулами из теории функции комплексного переменного вида :


где С 3 и С 4 – произвольные постоянные.

Итак, обобщим теорию.

Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

Рассмотрим примеры для каждого случая.

Пример.

Найдите общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛОДУ второго порядка с постоянными коэффициентами

Характеристическое уравнение:

Случай1. Дискриминант больше нуля

Случай2. Дискриминант равен нулю

Случай3. Дискриминант меньше нуля

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами

§ 10. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛНДУ второго порядка с постоянными коэффициентами

Метод вариации постоянных

Метод решения ЛНДУ со специальной правой частью

Теорема о структуре общего решения ЛНДУ

1. Функция r (x ) – многочлен степени т

2. Функция r (x ) – произведение числа на показательную функцию

3. Функция r (x ) – сумма тригонометрических функций

Алгоритм нахождения общего решения ЛНДУ со специальной правой частью

Приложение


§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Дифференциальное уравнение второго порядка называется линейным однородным дифференциальным уравнением (ЛОДУ) с постоянными коэффициентами , если оно имеет вид:

где p и q

Для нахождения общего решения ЛОДУ достаточно найти два его различных частных решения и . Тогда общее решение ЛОДУ будет иметь вид

где С 1 и С

Леонард Эйлер предложил искать частные решения ЛОДУ в виде

где k – некоторое число.

Дифференцируя эту функцию два раза и подставляя выражения для у , у" и у" в уравнение , получим:

Полученное уравнение называется характеристическим уравнением ЛОДУ. Для его составления достаточно в исходном уравнении заменить у" , у" и у соответственно на k 2 , k и 1:

Решив характеристическое уравнение, т.е. найдя корни k 1 и k 2 ,мы найдем и частные решения исходного ЛОДУ.

Характеристическое уравнение есть квадратное уравнение, его корни находятся через дискриминант

При этом возможны следующие три случая .

Случай 1 . Дискриминант больше нуля , следовательно, корни k 1 и k 2 действительные и различные:

k 1 ¹ k 2

где С 1 и С 2 – произвольные независимые постоянные.

Случай 2 . Дискриминант равен нулю , следовательно, корни k 1 и k 2 действительные и равные:

k 1 = k 2 = k

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные.

Случай 3 . Дискриминант меньше нуля . В этом случае уравнение не имеет действительных корней:

Корней нет.

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные,

Таким образом, нахождение общего решения ЛОДУ второго порядка с постоянными коэффициентами сводится к нахождению корней характеристического уравнения и использованию формул общего решения уравнения (не прибегая к вычислению интегралов).

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами :

1. Привести уравнение к виду , где p и q – некоторые действительные числа.

2. Составить характеристическое уравнение .

3. Найти дискриминант характеристического уравнения.

4. Используя формулы (см. Таблицу 1), в зависимости от знака дискриминанта записать общее решение.

Таблица 1

Таблица возможных общих решений