Лоренца сила. Сила, действующая на движущийся заряд Как определяется сила действующая на заряженную частицу

В статье расскажем про магнитную силу Лоренца, как она действует на проводник, рассмотрим правило левой руки для силы Лоренца и момент силы действующий на контур с током.

Сила Лоренца — это сила, которая действует на заряженную частицу, падающую с определенной скоростью в магнитное поле. Величина этой силы зависит от величины магнитной индукции магнитного поля B , электрического заряда частицы q и скорости v , с которой частица падает в поле.

То, как магнитное поле B ведет себя по отношению к нагрузке полностью отличается от того, как это наблюдается для электрического поля Е . Прежде всего, поле B не реагирует на нагрузку. Однако когда нагрузка перемещается в поле B , появляется сила, которая выражается формулой, которую можно рассматривать как определение поля B :

Таким образом, видно, что поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направление вектора B . Это можно проиллюстрировать на диаграмме:

На диаграмме q положительный заряд!

Единицы поля B могут быть получены из уравнения Лоренца. Таким образом, в системе СИ единица B равна 1 тесла (1T). В системе CGS полевой единицей является Гаусс (1G). 1T = 10 4 G


Для сравнения показана анимация движения как положительного, так и отрицательного заряда.



Когда поле B охватывает большую площадь, заряд q, движущийся перпендикулярно направлению вектора B, стабилизирует свое движение по круговой траектории. Однако, когда вектор v имеет компонент, параллельный вектору B, тогда путь заряда будет спиралью, как показано на анимации


Сила Лоренца на проводник с током

Сила, действующая на проводник с током, является результатом силы Лоренца, действующей на движущиеся носители заряда, электроны или ионы. Если в разделе направляющей длиной l, как на чертеже

полный заряд Q движется, тогда сила F, действующая на этот сегмент, равна

Частное Q / t является значением протекающего тока I и, следовательно, сила, действующая на участок с током, выражается формулой

Чтобы учесть зависимость силы F от угла между вектором B и осью отрезка, длина отрезка l была задана характеристиками вектора.

Только электроны движутся в металле под действием разности потенциалов; ионы металлов остаются неподвижными в кристаллической решетке. В растворах электролитов анионы и катионы подвижны.

Правило левой руки сила Лоренца — определяющее направление и возврат вектора магнитной (электродинамической) энергии.

Если левая рука расположена так, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (чтобы они проникали внутрь руки), а все пальцы — кроме большого пальца — указывают направление протекания положительного тока (движущаяся молекула), отклоненный большой палец указывает направление электродинамической силы, действующей на положительный электрический заряд, помещенный в это поле (для отрицательного заряда, сила будет противоположная).

Второй способ определения направления электромагнитной силы заключается в расположении большого, указательного и среднего пальцев под прямым углом. При таком расположении указательный палец показывает направление линий магнитного поля, направление среднего пальца — направление движения тока, а также направление большого пальца силы.

Момент силы, действующий на контур с током в магнитном поле

Момент силы, действующей на контур с током в магнитном поле (например, на проволочную катушку в обмотке электродвигателя), также определяется силой Лоренца. Если петля (отмеченная на схеме красным цветом) может вращаться вокруг оси, перпендикулярной полю B, и проводит ток I, то появляются две неуравновешенные силы F, действующие в стороны от рамы, параллельной оси вращения.

Силой Лоренца называют силу, которая действует со стороны электромагнитного поля на движущийся электрический заряд. Весьма нередко силой Лоренца называют лишь магнитную составляющую этого поля. Формула для определения:

F = q(E+vB),

где q — заряд частицы; Е — напряжённость электрического поля; B — магнитная индукция поля; v — скорость частицы.

Сила Лоренца очень похожа по своему принципу на , разница заключается в том, что последняя действует на весь проводник, который в целом электрически нейтральный, а сила Лоренца описывает влияние электромагнитного поля лишь на единичный движущийся заряд.

Она характеризуется тем, что не изменяет скорость перемещения зарядов, а лишь воздействует на вектор скорости, то есть способна изменять направление движения заряженных частиц.

В природе сила Лоренца позволяет защищать Землю от воздействия космической радиации. Под её воздействием падающие на планету заряженные частицы отклоняются от прямой траектории благодаря присутствию магнитного поля Земли, вызывая полярные сияния.

В технике сила Лоренца используется очень часто: во всех двигателях и генераторах именно она приводит во вращение ротор под действием электромагнитного поля статора.

Таким образом, в любых электромоторах и электроприводах основным видом силы является Лоренцева. Кроме того, она применяется в ускорителях заряженных частиц, а также в электронных пушках, которые раньше устанавливались в ламповых телевизорах. В кинескопе испускаемые пушкой электроны отклоняются под влиянием электромагнитного поля, что происходит при участии Лоренцевой силы.

Кроме того, эта сила используется в масс-спектрометрии и масс-электрографии для приборов, способных сортировать заряженные частицы в зависимости от их удельного заряда (отношение заряда к массе частицы). Это позволяет с высокой точностью определять массу частиц. Также находит применение в других КИП, например, в бесконтактном способе измерения расхода электропроводящих жидких сред (расходомеры). Это очень актуально, если жидкая среда обладает очень высокой температурой (расплав металлов, стекла и др.).

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца . Опытным путём установлено, что сила, действующая в магнитном поле на заряд , перпендикулярна векторами, а ее модуль определяется формулой:

,

где
– угол между векторами и.

Направление силы Лоренца определяется правилом левой руки (рис. 6):

если вытянутые пальцы расположить по направлению скорости положительного заряда, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец укажет направление силы , действующей на заряд со стороны магнитного поля.

Для отрицательного заряда направление следует изменить на противоположное.

Рис. 6. Правило левой руки для определения направления силы Лоренца.

1.5. Сила Ампера. Правило левой руки для определения направления силы Ампера

Экспериментально установлено, что на проводник с током, находящийся в магнитном поле, действует сила, получившая название силы Ампера (см. п. 1.3.). Направление силы Ампера (рис. 4) определяется правилом левой руки (см. п. 1.3).

Модуль силы Ампера вычисляется по формуле

,

где – сила тока в проводнике,
- индукция магнитного поля,- длина проводника,
- угол между направлением тока и вектором.

1.6. Магнитный поток

Магнитным потоком
сквозь замкнутый контур называется скалярная физическая величина, равная произведению модуля вектора на площадьконтура и на косинус угла
между вектором и нормалью к контуру (рис. 7):


Рис. 7. К понятию магнитного потока

Магнитный поток наглядно можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью .

Единицей магнитного потока является вебер
.

Магнитный поток в 1 Вб создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

1 Вб =1 Тл·м 2 .

2. Электромагнитная индукция

2.1. Явление электромагнитной индукции

В 1831г. Фарадей обнаружил физическое явление, получившее название явления электромагнитной индукции (ЭМИ), заключающееся в том, что при изменении магнитного потока, пронизывающего контур, в нем возникает электрический ток . Полученный Фарадеем ток называется индукционным .

Индукционный ток можно получить, например, если постоянный магнит вдвигать внутрь катушки, к которой присоединен гальванометр (рис. 8, а). Если магнит вынимать из катушки, возникает ток противоположного направления (рис. 8, б).

Индукционный ток возникает и в том случае, когда магнит неподвижен, а движется катушка (вверх или вниз), т.е. важна лишь относительность движения.

Но не при всяком движении возникает индукционный ток. При вращении магнита вокруг его вертикальной оси тока нет, т.к. в этом случае магнитный поток сквозь катушку не изменяется (рис. 8, в), в то время как в предыдущих опытах магнитный поток меняется: в первом опыте он растет, а во втором – уменьшается (рис. 8, а, б).

Направление индукционного тока подчиняется правилу Ленца :

возникающий в замкнутом контуре индукционный ток всегда направлен так, чтобы создаваемое им магнитное поле противодействовало причине, его вызывающей.

Индукционный ток препятствует внешнему потоку при его увеличении и поддерживает внешний поток при его убывании.

Рис. 8. Явление электромагнитной индукции

Ниже на левом рисунке (рис. 9) индукция внешнего магнитного поля , направленного "от нас" (+) растет (>0), на правом – убывает (<0). Видно, чтоиндукционный ток направлен так, что его собственное магнитное поле препятствует изменению внешнего магнитного потока, вызвавшего этот ток.

Рис. 9. К определению направления индукционного тока

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле

    Анимация

    Описание

    Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.

    Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:

    F = qE + q, (1)

    где q - заряженная частица;

    Е - напряженность электрического поля;

    B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;

    V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .

    Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:

    F м = q. (2)

    Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

    В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.

    В скалярной форме выражение (2) имеет вид:

    Fм = qVBsina , (3)

    где a - угол между векторами скорости и магнитной индукции.

    Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).

    Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.

    Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).

    Направление силы, действующей на положительный заряд в магнитном поле

    Рис. 1

    Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).

    Направление силы Лоренца, действующей на электрон в магнитном поле

    Рис. 2

    Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.

    Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:

    где - удельный заряд частицы.

    Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.

    В случае нерелятивистской частицы:

    где - удельный заряд частицы.

    В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).

    Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:

    период обращения частицы:

    Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:

    h = Vcos a T . (6)

    Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).

    Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В

    Рис. 3

    Электрическое поле отсутствует.

    Если электрическое поле E № 0, движение носит более сложный характер.

    В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).

    В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.

    Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.

    Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).

    Временные характеристики

    Время инициации (log to от -15 до -15);

    Время существования (log tc от 15 до 15);

    Время деградации (log td от -15 до -15);

    Время оптимального проявления (log tk от -12 до 3).

    Диаграмма:

    Технические реализации эффекта

    Техническая реализация действия силы Лоренца

    Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.

    Применение эффекта

    Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.

    Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .

    Объясняется этот эффект действием силы Лоренца на движущийся заряд.

    Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.

    Литература

    1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

    2. Физический энциклопедический словарь.- М., 1983.

    3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.

    Ключевые слова

    • электрический заряд
    • магнитная индукция
    • магнитное поле
    • напряженность электрического поля
    • сила Лоренца
    • скорость частицы
    • радиус окружности
    • период обращения
    • шаг винтовой траектории
    • электрон
    • протон
    • позитрон

    Разделы естественных наук: